0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 AND
↳5 IDP
↳6 IDPNonInfProof (⇒)
↳7 IDP
↳8 IDependencyGraphProof (⇔)
↳9 TRUE
↳10 IDP
↳11 IDPNonInfProof (⇒)
↳12 AND
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 TRUE
↳16 IDP
↳17 IDependencyGraphProof (⇔)
↳18 TRUE
package SearchTreeR;
public class Random {
static String[] args;
static int index = 0;
public static int random() {
final String string = args[index];
index++;
return string.length();
}
}
package SearchTreeR;
public class SearchTreeR {
public static void main(final String[] args) {
Random.args = args;
final Tree t = new Tree(Random.random());
final int numberOfVals = Random.random();
for (int i = 0; i < numberOfVals; i++) {
t.insert(Random.random());
}
}
}
package SearchTreeR;
public class Tree {
Tree left;
Tree right;
int value;
public Tree(final int val) {
this.value = val;
}
public void insert(final int v) {
if (v <= this.value) {
if (this.left == null) {
this.left = new Tree(v);
} else {
this.left.insert(v);
}
} else {
if (this.right == null) {
this.right = new Tree(v);
} else {
this.right.insert(v);
}
}
}
}
Generated 30 rules for P and 51 rules for R.
Combined rules. Obtained 2 rules for P and 8 rules for R.
Filtered ground terms:
3159_0_insert_Load(x1, x2, x3, x4) → 3159_0_insert_Load(x2, x3, x4)
Cond_3159_0_insert_Load1(x1, x2, x3, x4, x5) → Cond_3159_0_insert_Load1(x1, x3, x4, x5)
SearchTreeR.Tree(x1, x2, x3, x4) → SearchTreeR.Tree(x2, x3, x4)
Cond_3159_0_insert_Load(x1, x2, x3, x4, x5) → Cond_3159_0_insert_Load(x1, x3, x4, x5)
3577_0_insert_Return(x1) → 3577_0_insert_Return
3540_0_insert_Return(x1) → 3540_0_insert_Return
3470_0_insert_Return(x1) → 3470_0_insert_Return
3466_0_insert_Return(x1) → 3466_0_insert_Return
Filtered duplicate args:
3159_0_insert_Load(x1, x2, x3) → 3159_0_insert_Load(x1, x3)
Cond_3159_0_insert_Load1(x1, x2, x3, x4) → Cond_3159_0_insert_Load1(x1, x2, x4)
Cond_3159_0_insert_Load(x1, x2, x3, x4) → Cond_3159_0_insert_Load(x1, x2, x4)
Filtered unneeded arguments:
3393_1_insert_InvokeMethod(x1, x2, x3) → 3393_1_insert_InvokeMethod(x1, x2)
3401_1_insert_InvokeMethod(x1, x2, x3) → 3401_1_insert_InvokeMethod(x1, x2)
Combined rules. Obtained 2 rules for P and 8 rules for R.
Finished conversion. Obtained 2 rules for P and 8 rules for R. System has predefined symbols.
Generated 37 rules for P and 156 rules for R.
Combined rules. Obtained 6 rules for P and 13 rules for R.
Filtered ground terms:
3655_1_main_InvokeMethod(x1, x2, x3, x4, x5) → 3655_1_main_InvokeMethod(x1, x3, x4)
SearchTreeR.Tree(x1) → SearchTreeR.Tree
3655_0_random_ArrayAccess(x1, x2, x3) → 3655_0_random_ArrayAccess(x2, x3)
Cond_3985_1_main_InvokeMethod3(x1, x2, x3, x4, x5, x6, x7) → Cond_3985_1_main_InvokeMethod3(x1, x4, x5, x7)
3577_0_insert_Return(x1) → 3577_0_insert_Return
3985_1_main_InvokeMethod(x1, x2, x3, x4, x5, x6) → 3985_1_main_InvokeMethod(x1, x3, x4, x6)
Cond_3985_1_main_InvokeMethod2(x1, x2, x3, x4, x5, x6, x7) → Cond_3985_1_main_InvokeMethod2(x1, x4, x5, x7)
3540_0_insert_Return(x1) → 3540_0_insert_Return
Cond_3985_1_main_InvokeMethod1(x1, x2, x3, x4, x5, x6, x7) → Cond_3985_1_main_InvokeMethod1(x1, x4, x5, x7)
3470_0_insert_Return(x1) → 3470_0_insert_Return
Cond_3985_1_main_InvokeMethod(x1, x2, x3, x4, x5, x6, x7) → Cond_3985_1_main_InvokeMethod(x1, x4, x5, x7)
3466_0_insert_Return(x1) → 3466_0_insert_Return
3985_0_insert_Load(x1, x2, x3) → 3985_0_insert_Load(x3)
Cond_3710_1_main_InvokeMethod(x1, x2, x3, x4, x5, x6) → Cond_3710_1_main_InvokeMethod(x1, x2, x4, x5)
3710_0_random_IntArithmetic(x1, x2, x3, x4) → 3710_0_random_IntArithmetic(x2, x3)
3710_1_main_InvokeMethod(x1, x2, x3, x4, x5) → 3710_1_main_InvokeMethod(x1, x3, x4)
Cond_3655_1_main_InvokeMethod(x1, x2, x3, x4, x5, x6) → Cond_3655_1_main_InvokeMethod(x1, x2, x4, x5)
3215_0_insert_GT(x1, x2, x3, x4, x5) → 3215_0_insert_GT(x3, x4, x5)
Cond_3215_0_insert_GT3(x1, x2, x3, x4, x5, x6) → Cond_3215_0_insert_GT3(x1, x4, x5, x6)
Cond_3215_0_insert_GT2(x1, x2, x3, x4, x5, x6) → Cond_3215_0_insert_GT2(x1, x4, x5, x6)
Cond_3215_0_insert_GT1(x1, x2, x3, x4, x5, x6) → Cond_3215_0_insert_GT1(x1, x4, x5, x6)
Cond_3215_0_insert_GT(x1, x2, x3, x4, x5, x6) → Cond_3215_0_insert_GT(x1, x4, x5, x6)
Filtered duplicate args:
3215_0_insert_GT(x1, x2, x3) → 3215_0_insert_GT(x2, x3)
Cond_3215_0_insert_GT3(x1, x2, x3, x4) → Cond_3215_0_insert_GT3(x1, x3, x4)
Cond_3215_0_insert_GT2(x1, x2, x3, x4) → Cond_3215_0_insert_GT2(x1, x3, x4)
Cond_3215_0_insert_GT1(x1, x2, x3, x4) → Cond_3215_0_insert_GT1(x1, x3, x4)
Cond_3215_0_insert_GT(x1, x2, x3, x4) → Cond_3215_0_insert_GT(x1, x3, x4)
Filtered unneeded arguments:
3985_1_main_InvokeMethod(x1, x2, x3, x4) → 3985_1_main_InvokeMethod(x1, x2, x3)
Cond_3985_1_main_InvokeMethod(x1, x2, x3, x4) → Cond_3985_1_main_InvokeMethod(x1, x2, x3)
Cond_3985_1_main_InvokeMethod1(x1, x2, x3, x4) → Cond_3985_1_main_InvokeMethod1(x1, x2, x3)
Cond_3985_1_main_InvokeMethod2(x1, x2, x3, x4) → Cond_3985_1_main_InvokeMethod2(x1, x2, x3)
Cond_3985_1_main_InvokeMethod3(x1, x2, x3, x4) → Cond_3985_1_main_InvokeMethod3(x1, x2, x3)
Cond_3215_0_insert_GT(x1, x2, x3) → Cond_3215_0_insert_GT(x1)
Cond_3215_0_insert_GT1(x1, x2, x3) → Cond_3215_0_insert_GT1(x1, x2)
3401_1_insert_InvokeMethod(x1, x2, x3) → 3401_1_insert_InvokeMethod(x1, x2)
Cond_3215_0_insert_GT2(x1, x2, x3) → Cond_3215_0_insert_GT2(x1)
Cond_3215_0_insert_GT3(x1, x2, x3) → Cond_3215_0_insert_GT3(x1, x2)
3393_1_insert_InvokeMethod(x1, x2, x3) → 3393_1_insert_InvokeMethod(x1, x2)
Filtered all free variables:
3710_1_main_InvokeMethod(x1, x2, x3) → 3710_1_main_InvokeMethod(x2, x3)
Cond_3710_1_main_InvokeMethod(x1, x2, x3, x4) → Cond_3710_1_main_InvokeMethod(x1, x3, x4)
3985_1_main_InvokeMethod(x1, x2, x3) → 3985_1_main_InvokeMethod(x2, x3)
3655_1_main_InvokeMethod(x1, x2, x3) → 3655_1_main_InvokeMethod(x2, x3)
Cond_3655_1_main_InvokeMethod(x1, x2, x3, x4) → Cond_3655_1_main_InvokeMethod(x1, x3, x4)
3215_0_insert_GT(x1, x2) → 3215_0_insert_GT(x1)
Combined rules. Obtained 1 rules for P and 13 rules for R.
Finished conversion. Obtained 1 rules for P and 13 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((x3[0] > x0[0] →* TRUE)∧(java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])) →* java.lang.Object(SearchTreeR.Tree(x0[1], java.lang.Object(x1[1]), x2[1])))∧(x3[0] →* x3[1]))
(1) -> (0), if ((java.lang.Object(x1[1]) →* java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])))∧(x3[1] →* x3[0]))
(1) -> (2), if ((java.lang.Object(x1[1]) →* java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))))∧(x3[1] →* x3[2]))
(2) -> (3), if ((x3[2] <= x0[2] →* TRUE)∧(java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))) →* java.lang.Object(SearchTreeR.Tree(x0[3], x1[3], java.lang.Object(x2[3]))))∧(x3[2] →* x3[3]))
(3) -> (0), if ((java.lang.Object(x2[3]) →* java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])))∧(x3[3] →* x3[0]))
(3) -> (2), if ((java.lang.Object(x2[3]) →* java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))))∧(x3[3] →* x3[2]))
(1) (>(x3[0], x0[0])=TRUE∧java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0]))=java.lang.Object(SearchTreeR.Tree(x0[1], java.lang.Object(x1[1]), x2[1]))∧x3[0]=x3[1] ⇒ 3159_0_INSERT_LOAD(java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])), x3[0])≥NonInfC∧3159_0_INSERT_LOAD(java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])), x3[0])≥COND_3159_0_INSERT_LOAD(>(x3[0], x0[0]), java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])), x3[0])∧(UIncreasing(COND_3159_0_INSERT_LOAD(>(x3[0], x0[0]), java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])), x3[0])), ≥))
(2) (>(x3[0], x0[0])=TRUE ⇒ 3159_0_INSERT_LOAD(java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])), x3[0])≥NonInfC∧3159_0_INSERT_LOAD(java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])), x3[0])≥COND_3159_0_INSERT_LOAD(>(x3[0], x0[0]), java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])), x3[0])∧(UIncreasing(COND_3159_0_INSERT_LOAD(>(x3[0], x0[0]), java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])), x3[0])), ≥))
(3) (0 ≥ 0 ⇒ (UIncreasing(COND_3159_0_INSERT_LOAD(>(x3[0], x0[0]), java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])), x3[0])), ≥)∧[bni_28 + (-1)Bound*bni_28] + [(2)bni_28]x2[0] + [bni_28]x1[0] + [bni_28]x0[0] ≥ 0∧[(-1)bso_29] ≥ 0)
(4) (0 ≥ 0 ⇒ (UIncreasing(COND_3159_0_INSERT_LOAD(>(x3[0], x0[0]), java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])), x3[0])), ≥)∧[bni_28 + (-1)Bound*bni_28] + [(2)bni_28]x2[0] + [bni_28]x1[0] + [bni_28]x0[0] ≥ 0∧[(-1)bso_29] ≥ 0)
(5) (0 ≥ 0 ⇒ (UIncreasing(COND_3159_0_INSERT_LOAD(>(x3[0], x0[0]), java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])), x3[0])), ≥)∧[bni_28 + (-1)Bound*bni_28] + [(2)bni_28]x2[0] + [bni_28]x1[0] + [bni_28]x0[0] ≥ 0∧[(-1)bso_29] ≥ 0)
(6) (0 ≥ 0 ⇒ (UIncreasing(COND_3159_0_INSERT_LOAD(>(x3[0], x0[0]), java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])), x3[0])), ≥)∧0 ≥ 0∧[(2)bni_28] ≥ 0∧[bni_28] ≥ 0∧[bni_28] ≥ 0∧[bni_28 + (-1)Bound*bni_28] ≥ 0∧0 ≥ 0∧0 ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_29] ≥ 0)
(7) (>(x3[0], x0[0])=TRUE∧java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0]))=java.lang.Object(SearchTreeR.Tree(x0[1], java.lang.Object(x1[1]), x2[1]))∧x3[0]=x3[1]∧java.lang.Object(x1[1])=java.lang.Object(SearchTreeR.Tree(x0[0]1, java.lang.Object(x1[0]1), x2[0]1))∧x3[1]=x3[0]1 ⇒ COND_3159_0_INSERT_LOAD(TRUE, java.lang.Object(SearchTreeR.Tree(x0[1], java.lang.Object(x1[1]), x2[1])), x3[1])≥NonInfC∧COND_3159_0_INSERT_LOAD(TRUE, java.lang.Object(SearchTreeR.Tree(x0[1], java.lang.Object(x1[1]), x2[1])), x3[1])≥3159_0_INSERT_LOAD(java.lang.Object(x1[1]), x3[1])∧(UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x1[1]), x3[1])), ≥))
(8) (>(x3[0], x0[0])=TRUE ⇒ COND_3159_0_INSERT_LOAD(TRUE, java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(SearchTreeR.Tree(x0[0]1, java.lang.Object(x1[0]1), x2[0]1)), x2[0])), x3[0])≥NonInfC∧COND_3159_0_INSERT_LOAD(TRUE, java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(SearchTreeR.Tree(x0[0]1, java.lang.Object(x1[0]1), x2[0]1)), x2[0])), x3[0])≥3159_0_INSERT_LOAD(java.lang.Object(SearchTreeR.Tree(x0[0]1, java.lang.Object(x1[0]1), x2[0]1)), x3[0])∧(UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x1[1]), x3[1])), ≥))
(9) (0 ≥ 0 ⇒ (UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x1[1]), x3[1])), ≥)∧[(2)bni_30 + (-1)Bound*bni_30] + [(2)bni_30]x2[0] + [(2)bni_30]x2[0]1 + [bni_30]x1[0]1 + [bni_30]x0[0]1 + [bni_30]x0[0] ≥ 0∧[1 + (-1)bso_31] + [2]x2[0] + x0[0] ≥ 0)
(10) (0 ≥ 0 ⇒ (UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x1[1]), x3[1])), ≥)∧[(2)bni_30 + (-1)Bound*bni_30] + [(2)bni_30]x2[0] + [(2)bni_30]x2[0]1 + [bni_30]x1[0]1 + [bni_30]x0[0]1 + [bni_30]x0[0] ≥ 0∧[1 + (-1)bso_31] + [2]x2[0] + x0[0] ≥ 0)
(11) (0 ≥ 0 ⇒ (UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x1[1]), x3[1])), ≥)∧[(2)bni_30 + (-1)Bound*bni_30] + [(2)bni_30]x2[0] + [(2)bni_30]x2[0]1 + [bni_30]x1[0]1 + [bni_30]x0[0]1 + [bni_30]x0[0] ≥ 0∧[1 + (-1)bso_31] + [2]x2[0] + x0[0] ≥ 0)
(12) (0 ≥ 0 ⇒ (UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x1[1]), x3[1])), ≥)∧0 ≥ 0∧[(2)bni_30] ≥ 0∧[(2)bni_30] ≥ 0∧[bni_30] ≥ 0∧[bni_30] ≥ 0∧[bni_30] ≥ 0∧[(2)bni_30 + (-1)Bound*bni_30] ≥ 0∧0 ≥ 0∧0 ≥ 0∧0 ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[1 + (-1)bso_31] ≥ 0∧[1] ≥ 0)
(13) (>(x3[0], x0[0])=TRUE∧java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0]))=java.lang.Object(SearchTreeR.Tree(x0[1], java.lang.Object(x1[1]), x2[1]))∧x3[0]=x3[1]∧java.lang.Object(x1[1])=java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2])))∧x3[1]=x3[2] ⇒ COND_3159_0_INSERT_LOAD(TRUE, java.lang.Object(SearchTreeR.Tree(x0[1], java.lang.Object(x1[1]), x2[1])), x3[1])≥NonInfC∧COND_3159_0_INSERT_LOAD(TRUE, java.lang.Object(SearchTreeR.Tree(x0[1], java.lang.Object(x1[1]), x2[1])), x3[1])≥3159_0_INSERT_LOAD(java.lang.Object(x1[1]), x3[1])∧(UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x1[1]), x3[1])), ≥))
(14) (>(x3[0], x0[0])=TRUE ⇒ COND_3159_0_INSERT_LOAD(TRUE, java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x2[0])), x3[0])≥NonInfC∧COND_3159_0_INSERT_LOAD(TRUE, java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x2[0])), x3[0])≥3159_0_INSERT_LOAD(java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x3[0])∧(UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x1[1]), x3[1])), ≥))
(15) (0 ≥ 0 ⇒ (UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x1[1]), x3[1])), ≥)∧[(3)bni_30 + (-1)Bound*bni_30] + [(2)bni_30]x2[0] + [(2)bni_30]x2[2] + [bni_30]x1[2] + [bni_30]x0[2] + [bni_30]x0[0] ≥ 0∧[1 + (-1)bso_31] + [2]x2[0] + x0[0] ≥ 0)
(16) (0 ≥ 0 ⇒ (UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x1[1]), x3[1])), ≥)∧[(3)bni_30 + (-1)Bound*bni_30] + [(2)bni_30]x2[0] + [(2)bni_30]x2[2] + [bni_30]x1[2] + [bni_30]x0[2] + [bni_30]x0[0] ≥ 0∧[1 + (-1)bso_31] + [2]x2[0] + x0[0] ≥ 0)
(17) (0 ≥ 0 ⇒ (UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x1[1]), x3[1])), ≥)∧[(3)bni_30 + (-1)Bound*bni_30] + [(2)bni_30]x2[0] + [(2)bni_30]x2[2] + [bni_30]x1[2] + [bni_30]x0[2] + [bni_30]x0[0] ≥ 0∧[1 + (-1)bso_31] + [2]x2[0] + x0[0] ≥ 0)
(18) (0 ≥ 0 ⇒ (UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x1[1]), x3[1])), ≥)∧0 ≥ 0∧[(2)bni_30] ≥ 0∧[(2)bni_30] ≥ 0∧[bni_30] ≥ 0∧[bni_30] ≥ 0∧[bni_30] ≥ 0∧[(3)bni_30 + (-1)Bound*bni_30] ≥ 0∧0 ≥ 0∧0 ≥ 0∧0 ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[1 + (-1)bso_31] ≥ 0∧[1] ≥ 0)
(19) (<=(x3[2], x0[2])=TRUE∧java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2])))=java.lang.Object(SearchTreeR.Tree(x0[3], x1[3], java.lang.Object(x2[3])))∧x3[2]=x3[3] ⇒ 3159_0_INSERT_LOAD(java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x3[2])≥NonInfC∧3159_0_INSERT_LOAD(java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x3[2])≥COND_3159_0_INSERT_LOAD1(<=(x3[2], x0[2]), java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x3[2])∧(UIncreasing(COND_3159_0_INSERT_LOAD1(<=(x3[2], x0[2]), java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x3[2])), ≥))
(20) (<=(x3[2], x0[2])=TRUE ⇒ 3159_0_INSERT_LOAD(java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x3[2])≥NonInfC∧3159_0_INSERT_LOAD(java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x3[2])≥COND_3159_0_INSERT_LOAD1(<=(x3[2], x0[2]), java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x3[2])∧(UIncreasing(COND_3159_0_INSERT_LOAD1(<=(x3[2], x0[2]), java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x3[2])), ≥))
(21) (0 ≥ 0 ⇒ (UIncreasing(COND_3159_0_INSERT_LOAD1(<=(x3[2], x0[2]), java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x3[2])), ≥)∧[(2)bni_32 + (-1)Bound*bni_32] + [(2)bni_32]x2[2] + [bni_32]x1[2] + [bni_32]x0[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(22) (0 ≥ 0 ⇒ (UIncreasing(COND_3159_0_INSERT_LOAD1(<=(x3[2], x0[2]), java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x3[2])), ≥)∧[(2)bni_32 + (-1)Bound*bni_32] + [(2)bni_32]x2[2] + [bni_32]x1[2] + [bni_32]x0[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(23) (0 ≥ 0 ⇒ (UIncreasing(COND_3159_0_INSERT_LOAD1(<=(x3[2], x0[2]), java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x3[2])), ≥)∧[(2)bni_32 + (-1)Bound*bni_32] + [(2)bni_32]x2[2] + [bni_32]x1[2] + [bni_32]x0[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(24) (0 ≥ 0 ⇒ (UIncreasing(COND_3159_0_INSERT_LOAD1(<=(x3[2], x0[2]), java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x3[2])), ≥)∧0 ≥ 0∧[(2)bni_32] ≥ 0∧[bni_32] ≥ 0∧[bni_32] ≥ 0∧[(2)bni_32 + (-1)Bound*bni_32] ≥ 0∧0 ≥ 0∧0 ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_33] ≥ 0)
(25) (<=(x3[2], x0[2])=TRUE∧java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2])))=java.lang.Object(SearchTreeR.Tree(x0[3], x1[3], java.lang.Object(x2[3])))∧x3[2]=x3[3]∧java.lang.Object(x2[3])=java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0]))∧x3[3]=x3[0] ⇒ COND_3159_0_INSERT_LOAD1(TRUE, java.lang.Object(SearchTreeR.Tree(x0[3], x1[3], java.lang.Object(x2[3]))), x3[3])≥NonInfC∧COND_3159_0_INSERT_LOAD1(TRUE, java.lang.Object(SearchTreeR.Tree(x0[3], x1[3], java.lang.Object(x2[3]))), x3[3])≥3159_0_INSERT_LOAD(java.lang.Object(x2[3]), x3[3])∧(UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x2[3]), x3[3])), ≥))
(26) (<=(x3[2], x0[2])=TRUE ⇒ COND_3159_0_INSERT_LOAD1(TRUE, java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])))), x3[2])≥NonInfC∧COND_3159_0_INSERT_LOAD1(TRUE, java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])))), x3[2])≥3159_0_INSERT_LOAD(java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])), x3[2])∧(UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x2[3]), x3[3])), ≥))
(27) (0 ≥ 0 ⇒ (UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x2[3]), x3[3])), ≥)∧[(4)bni_34 + (-1)Bound*bni_34] + [(4)bni_34]x2[0] + [(2)bni_34]x1[0] + [(2)bni_34]x0[0] + [bni_34]x1[2] + [bni_34]x0[2] ≥ 0∧[3 + (-1)bso_35] + [2]x2[0] + x1[0] + x0[0] + x1[2] + x0[2] ≥ 0)
(28) (0 ≥ 0 ⇒ (UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x2[3]), x3[3])), ≥)∧[(4)bni_34 + (-1)Bound*bni_34] + [(4)bni_34]x2[0] + [(2)bni_34]x1[0] + [(2)bni_34]x0[0] + [bni_34]x1[2] + [bni_34]x0[2] ≥ 0∧[3 + (-1)bso_35] + [2]x2[0] + x1[0] + x0[0] + x1[2] + x0[2] ≥ 0)
(29) (0 ≥ 0 ⇒ (UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x2[3]), x3[3])), ≥)∧[(4)bni_34 + (-1)Bound*bni_34] + [(4)bni_34]x2[0] + [(2)bni_34]x1[0] + [(2)bni_34]x0[0] + [bni_34]x1[2] + [bni_34]x0[2] ≥ 0∧[3 + (-1)bso_35] + [2]x2[0] + x1[0] + x0[0] + x1[2] + x0[2] ≥ 0)
(30) (0 ≥ 0 ⇒ (UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x2[3]), x3[3])), ≥)∧0 ≥ 0∧[(4)bni_34] ≥ 0∧[(2)bni_34] ≥ 0∧[(2)bni_34] ≥ 0∧[bni_34] ≥ 0∧[bni_34] ≥ 0∧[(4)bni_34 + (-1)Bound*bni_34] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[3 + (-1)bso_35] ≥ 0∧[1] ≥ 0)
(31) (<=(x3[2], x0[2])=TRUE∧java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2])))=java.lang.Object(SearchTreeR.Tree(x0[3], x1[3], java.lang.Object(x2[3])))∧x3[2]=x3[3]∧java.lang.Object(x2[3])=java.lang.Object(SearchTreeR.Tree(x0[2]1, x1[2]1, java.lang.Object(x2[2]1)))∧x3[3]=x3[2]1 ⇒ COND_3159_0_INSERT_LOAD1(TRUE, java.lang.Object(SearchTreeR.Tree(x0[3], x1[3], java.lang.Object(x2[3]))), x3[3])≥NonInfC∧COND_3159_0_INSERT_LOAD1(TRUE, java.lang.Object(SearchTreeR.Tree(x0[3], x1[3], java.lang.Object(x2[3]))), x3[3])≥3159_0_INSERT_LOAD(java.lang.Object(x2[3]), x3[3])∧(UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x2[3]), x3[3])), ≥))
(32) (<=(x3[2], x0[2])=TRUE ⇒ COND_3159_0_INSERT_LOAD1(TRUE, java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(SearchTreeR.Tree(x0[2]1, x1[2]1, java.lang.Object(x2[2]1))))), x3[2])≥NonInfC∧COND_3159_0_INSERT_LOAD1(TRUE, java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(SearchTreeR.Tree(x0[2]1, x1[2]1, java.lang.Object(x2[2]1))))), x3[2])≥3159_0_INSERT_LOAD(java.lang.Object(SearchTreeR.Tree(x0[2]1, x1[2]1, java.lang.Object(x2[2]1))), x3[2])∧(UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x2[3]), x3[3])), ≥))
(33) (0 ≥ 0 ⇒ (UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x2[3]), x3[3])), ≥)∧[(6)bni_34 + (-1)Bound*bni_34] + [(4)bni_34]x2[2]1 + [(2)bni_34]x1[2]1 + [(2)bni_34]x0[2]1 + [bni_34]x1[2] + [bni_34]x0[2] ≥ 0∧[4 + (-1)bso_35] + [2]x2[2]1 + x1[2]1 + x0[2]1 + x1[2] + x0[2] ≥ 0)
(34) (0 ≥ 0 ⇒ (UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x2[3]), x3[3])), ≥)∧[(6)bni_34 + (-1)Bound*bni_34] + [(4)bni_34]x2[2]1 + [(2)bni_34]x1[2]1 + [(2)bni_34]x0[2]1 + [bni_34]x1[2] + [bni_34]x0[2] ≥ 0∧[4 + (-1)bso_35] + [2]x2[2]1 + x1[2]1 + x0[2]1 + x1[2] + x0[2] ≥ 0)
(35) (0 ≥ 0 ⇒ (UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x2[3]), x3[3])), ≥)∧[(6)bni_34 + (-1)Bound*bni_34] + [(4)bni_34]x2[2]1 + [(2)bni_34]x1[2]1 + [(2)bni_34]x0[2]1 + [bni_34]x1[2] + [bni_34]x0[2] ≥ 0∧[4 + (-1)bso_35] + [2]x2[2]1 + x1[2]1 + x0[2]1 + x1[2] + x0[2] ≥ 0)
(36) (0 ≥ 0 ⇒ (UIncreasing(3159_0_INSERT_LOAD(java.lang.Object(x2[3]), x3[3])), ≥)∧0 ≥ 0∧[(4)bni_34] ≥ 0∧[(2)bni_34] ≥ 0∧[(2)bni_34] ≥ 0∧[bni_34] ≥ 0∧[bni_34] ≥ 0∧[(6)bni_34 + (-1)Bound*bni_34] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[4 + (-1)bso_35] ≥ 0∧[1] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(3393_1_insert_InvokeMethod(x1, x2)) = 0
POL(3466_0_insert_Return) = 0
POL(java.lang.Object(x1)) = [1] + x1
POL(3540_0_insert_Return) = 0
POL(3470_0_insert_Return) = 0
POL(3577_0_insert_Return) = 0
POL(3401_1_insert_InvokeMethod(x1, x2)) = 0
POL(3159_0_INSERT_LOAD(x1, x2)) = [-1] + x1
POL(SearchTreeR.Tree(x1, x2, x3)) = [2]x3 + x2 + x1
POL(COND_3159_0_INSERT_LOAD(x1, x2, x3)) = [-1] + x2
POL(>(x1, x2)) = 0
POL(COND_3159_0_INSERT_LOAD1(x1, x2, x3)) = [-1] + x2
POL(<=(x1, x2)) = 0
COND_3159_0_INSERT_LOAD(TRUE, java.lang.Object(SearchTreeR.Tree(x0[1], java.lang.Object(x1[1]), x2[1])), x3[1]) → 3159_0_INSERT_LOAD(java.lang.Object(x1[1]), x3[1])
COND_3159_0_INSERT_LOAD1(TRUE, java.lang.Object(SearchTreeR.Tree(x0[3], x1[3], java.lang.Object(x2[3]))), x3[3]) → 3159_0_INSERT_LOAD(java.lang.Object(x2[3]), x3[3])
3159_0_INSERT_LOAD(java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])), x3[0]) → COND_3159_0_INSERT_LOAD(>(x3[0], x0[0]), java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])), x3[0])
COND_3159_0_INSERT_LOAD(TRUE, java.lang.Object(SearchTreeR.Tree(x0[1], java.lang.Object(x1[1]), x2[1])), x3[1]) → 3159_0_INSERT_LOAD(java.lang.Object(x1[1]), x3[1])
3159_0_INSERT_LOAD(java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x3[2]) → COND_3159_0_INSERT_LOAD1(<=(x3[2], x0[2]), java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x3[2])
COND_3159_0_INSERT_LOAD1(TRUE, java.lang.Object(SearchTreeR.Tree(x0[3], x1[3], java.lang.Object(x2[3]))), x3[3]) → 3159_0_INSERT_LOAD(java.lang.Object(x2[3]), x3[3])
3159_0_INSERT_LOAD(java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])), x3[0]) → COND_3159_0_INSERT_LOAD(>(x3[0], x0[0]), java.lang.Object(SearchTreeR.Tree(x0[0], java.lang.Object(x1[0]), x2[0])), x3[0])
3159_0_INSERT_LOAD(java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x3[2]) → COND_3159_0_INSERT_LOAD1(<=(x3[2], x0[2]), java.lang.Object(SearchTreeR.Tree(x0[2], x1[2], java.lang.Object(x2[2]))), x3[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x1[0] >= 0 && x0[0] > x1[0] + 1 →* TRUE)∧(x0[0] →* x0[1])∧(x1[0] →* x1[1]))
(1) -> (0), if ((x0[1] →* x0[0])∧(x1[1] + 1 →* x1[0]))
(1) (&&(>=(x1[0], 0), >(x0[0], +(x1[0], 1)))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ 3655_1_MAIN_INVOKEMETHOD(x0[0], x1[0])≥NonInfC∧3655_1_MAIN_INVOKEMETHOD(x0[0], x1[0])≥COND_3655_1_MAIN_INVOKEMETHOD(&&(>=(x1[0], 0), >(x0[0], +(x1[0], 1))), x0[0], x1[0])∧(UIncreasing(COND_3655_1_MAIN_INVOKEMETHOD(&&(>=(x1[0], 0), >(x0[0], +(x1[0], 1))), x0[0], x1[0])), ≥))
(2) (>=(x1[0], 0)=TRUE∧>(x0[0], +(x1[0], 1))=TRUE ⇒ 3655_1_MAIN_INVOKEMETHOD(x0[0], x1[0])≥NonInfC∧3655_1_MAIN_INVOKEMETHOD(x0[0], x1[0])≥COND_3655_1_MAIN_INVOKEMETHOD(&&(>=(x1[0], 0), >(x0[0], +(x1[0], 1))), x0[0], x1[0])∧(UIncreasing(COND_3655_1_MAIN_INVOKEMETHOD(&&(>=(x1[0], 0), >(x0[0], +(x1[0], 1))), x0[0], x1[0])), ≥))
(3) (x1[0] ≥ 0∧x0[0] + [-2] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_3655_1_MAIN_INVOKEMETHOD(&&(>=(x1[0], 0), >(x0[0], +(x1[0], 1))), x0[0], x1[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]x1[0] + [(2)bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(4) (x1[0] ≥ 0∧x0[0] + [-2] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_3655_1_MAIN_INVOKEMETHOD(&&(>=(x1[0], 0), >(x0[0], +(x1[0], 1))), x0[0], x1[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]x1[0] + [(2)bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(5) (x1[0] ≥ 0∧x0[0] + [-2] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_3655_1_MAIN_INVOKEMETHOD(&&(>=(x1[0], 0), >(x0[0], +(x1[0], 1))), x0[0], x1[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]x1[0] + [(2)bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_3655_1_MAIN_INVOKEMETHOD(&&(>=(x1[0], 0), >(x0[0], +(x1[0], 1))), x0[0], x1[0])), ≥)∧[(3)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[0] + [(2)bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(7) (COND_3655_1_MAIN_INVOKEMETHOD(TRUE, x0[1], x1[1])≥NonInfC∧COND_3655_1_MAIN_INVOKEMETHOD(TRUE, x0[1], x1[1])≥3655_1_MAIN_INVOKEMETHOD(x0[1], +(x1[1], 1))∧(UIncreasing(3655_1_MAIN_INVOKEMETHOD(x0[1], +(x1[1], 1))), ≥))
(8) ((UIncreasing(3655_1_MAIN_INVOKEMETHOD(x0[1], +(x1[1], 1))), ≥)∧[1 + (-1)bso_23] ≥ 0)
(9) ((UIncreasing(3655_1_MAIN_INVOKEMETHOD(x0[1], +(x1[1], 1))), ≥)∧[1 + (-1)bso_23] ≥ 0)
(10) ((UIncreasing(3655_1_MAIN_INVOKEMETHOD(x0[1], +(x1[1], 1))), ≥)∧[1 + (-1)bso_23] ≥ 0)
(11) ((UIncreasing(3655_1_MAIN_INVOKEMETHOD(x0[1], +(x1[1], 1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_23] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(3985_0_insert_Load(x1)) = [-1]
POL(3215_0_insert_GT(x1)) = [-1]
POL(3577_0_insert_Return) = [-1]
POL(3401_1_insert_InvokeMethod(x1, x2)) = [-1]
POL(java.lang.Object(x1)) = [-1]
POL(SearchTreeR.Tree) = [-1]
POL(3466_0_insert_Return) = [-1]
POL(3470_0_insert_Return) = [-1]
POL(3540_0_insert_Return) = [-1]
POL(3393_1_insert_InvokeMethod(x1, x2)) = [-1]
POL(3655_1_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + [-1]x2 + [2]x1
POL(COND_3655_1_MAIN_INVOKEMETHOD(x1, x2, x3)) = [-1] + [-1]x3 + [2]x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
COND_3655_1_MAIN_INVOKEMETHOD(TRUE, x0[1], x1[1]) → 3655_1_MAIN_INVOKEMETHOD(x0[1], +(x1[1], 1))
3655_1_MAIN_INVOKEMETHOD(x0[0], x1[0]) → COND_3655_1_MAIN_INVOKEMETHOD(&&(>=(x1[0], 0), >(x0[0], +(x1[0], 1))), x0[0], x1[0])
3655_1_MAIN_INVOKEMETHOD(x0[0], x1[0]) → COND_3655_1_MAIN_INVOKEMETHOD(&&(>=(x1[0], 0), >(x0[0], +(x1[0], 1))), x0[0], x1[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer